Asymptotic Dynamics of Nonlinear Schrödinger Equations with Many Bound States

نویسنده

  • Tai-Peng Tsai
چکیده

We consider a nonlinear Schrödinger equation with a bounded local potential in R3. The linear Hamiltonian is assumed to have three or more bound states with the eigenvalues satisfying some resonance conditions. Suppose that the initial data is localized and small of order n in H1, and that its ground state component is larger than n3−ǫ with ǫ > 0 small. We prove that the solution will converge locally to a nonlinear ground state as the time tends to infinity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic stability of ground states in 2D nonlinear Schrödinger equation including subcritical cases

We consider a class of nonlinear Schrödinger equations in two space dimensions with an attractive potential. The nonlinearity is local but rather general encompassing for the first time both subcritical and supercritical (in L) nonlinearities. We study the asymptotic stability of the nonlinear bound states, i.e. periodic in time localized in space solutions. Our result shows that all solutions ...

متن کامل

Asymptotic Dynamics of Nonlinear Schrödinger Equations: Resonance Dominated and Radiation Dominated Solutions

We consider a linear Schrödinger equation with a small nonlinear perturbation in R3. Assume that the linear Hamiltonian has exactly two bound states and its eigenvalues satisfy some resonance condition. We prove that if the initial data is near a nonlinear ground state, then the solution approaches to certain nonlinear ground state as the time tends to infinity. Furthermore, the difference betw...

متن کامل

Asymptotic stability of ground states in 3D nonlinear Schrödinger equation including subcritical cases

We consider a class of nonlinear Schrödinger equation in three space dimensions with an attractive potential. The nonlinearity is local but rather general encompassing for the first time both subcritical and supercritical (in L) nonlinearities. We study the asymptotic stability of the nonlinear bound states, i.e. periodic in time localized in space solutions. Our result shows that all solutions...

متن کامل

Orbital stability of bound states of nonlinear Schrödinger equations with linear and nonlinear lattices

We study the orbital stability and instability of single-spike bound states of critical semi-classical nonlinear Schrödinger equations (NLS) with linear and nonlinear lattices. These equations may model an inhomogeneous Bose-Einstein condensate and an optical beam in a nonlinear lattice. When the linear lattice is switched off, we derive the asymptotic expansion formulas and obtain necessary co...

متن کامل

Selection of the Ground State for Nonlinear Schrödinger Equations

We prove for a class of nonlinear Schrödinger systems (NLS) having two nonlinear bound states that the (generic) large time behavior is characterized by decay of the excited state, asymptotic approach to the nonlinear ground state and dispersive radiation. Our analysis elucidates the mechanism through which initial conditions which are very near the excited state branch evolve into a (nonlinear...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008